Effectiveness of pre-sterilization cleaning of endodontic instruments before placement in glass bead sterilizer

Shabir Ahmad Bhat
Registrar, Department of Conservative Dentistry and Endodontics, GDC, Srinagar

ARTICLE INFO

Keywords: Manual brushing, hydrogen peroxide, Sterilization

ABSTRACT

Background: Sterilization prevents the spread of infectious diseases. The present study was conducted to assess effectiveness of pre-sterilization cleaning of endodontic instruments before placement in glass bead sterilizer.

Materials & Methods: The present study was conducted on 40 K files contaminated by preparing canals of extracted human mandibular teeth & were divided in 4 groups of 10 instruments as group I was negative control (non contaminated), group II was positive control (contaminated without any cleaning protocol), group III was manual brushing + 3% H2O2 for 10 minutes and group IV was manual brushing + ultrasonic bath for 5 minutes. Debris score was assessed in all groups.

Results: Score 4 was seen maximally in group II and group I, score 3 in group III and group I, score 2 in group IV, III and II and score 1 in group IV, I, III and group II. The difference was significant (P< 0.05).

Conclusion: Authors found that manual brushing and ultrasonic bath is effective way of cleaning instruments as compared to manual brushing and hydrogen peroxide method.

INTRODUCTION

Endodontic instruments are often contaminated with necrotic & vital tissue, bacteria, dentin chips, blood by-products & other potential irritants which may act as antigens & precipitate spread of infection from one patient to another. This bio burden by forming a protective layer may insulate underlying microorganisms & thus interferes with sterilization. Microorganisms are the main causative agents for endodontic diseases; hence prevention for transmission of infectious diseases among patients, dentists & its auxiliary staff through proper disinfection & sterilization is of utmost importance. Microorganisms induce a variety of infectious diseases in the human body. Infection control is a major topic of concern in medical and dental health care settings. Contamination directly or indirectly leads to transmission of infectious agents. The prevention of cross-contamination of infectious diseases among dental staff and patients is a major problem which dental practitioners face. Sterilization prevents the spread of infectious diseases. In dentistry, it primarily relates to processing reusable instruments to prevent cross-infection. In endodontic, various instruments like files, reamers, gates glidden drill and peeso reamers are used for cleaning and shaping the root canal and to eliminate the bacterial population in pulp canal space. There are various methods to sterilize these instruments, such as dry heat sterilizer, autoclave, ethylene oxide gas, glass-bead sterilizer or hot-salt sterilizer, etc. The present

* Corresponding author: Shabir Ahmad Bhat, Registrar, Department of Conservative Dentistry and Endodontics, GDC, Srinagar
study was conducted to assess effectiveness of pre-
sterilization cleaning of endodontic instruments before
placement in glass bead sterilizer.

MATERIALS & METHODS
The present study was conducted in the department of
Conservative dentistry. It comprised of 40 K files
contaminated by preparing canals of extracted human
mandibular teeth & were divided in 4 groups of 10
instruments as group I was negative control (non
contaminated), group II was positive control (contaminated without any cleaning protocol), group III
was manual brushing + 3% H2O2 for 10 minutes and
group IV was manual brushing + ultrasonic bath for 5
minutes. The study was approved from institutional
ethical committee. All patients were informed regarding
the study and written consent was obtained.

Data such as name, age, gender etc was recorded. After
air drying all the instruments were immersed in Van-
Gieson's stain for 3 minutes. They were then rinsed
under running distilled water and again air dried. The
instruments were then examined for debris at 3 levels
apical, middle & coronal using a stereomicroscope.
Scoring system was used as 0- clean surface without any
debries, 1- organic film, 2- slight staining in the form of
single particles of debris scattered on the instrument
surface, 3- moderate staining, organic particles covering
the surface of the instrument as a continuous layer and 4-
a high level of staining, with the cutting flutes
completely covered with debris. Results thus obtained
were subjected to statistical analysis. P value less than
0.05 was considered significant.

RESULTS

<table>
<thead>
<tr>
<th>Groups</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent</td>
<td>Negative control</td>
<td>Positive control</td>
<td>Manual brushing + 3% H2O2</td>
<td>Manual brushing + ultrasonic bath</td>
</tr>
<tr>
<td>Number</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Table I: Distribution of patients

Table I shows distribution of teeth based on cleaning
procedure used in the study.

<table>
<thead>
<tr>
<th>Score</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Table II: Assessment of debris score

Table II, graph I shows that score 4 was seen maximally
in group II and group I, score 3 in group III and group II,
score 2 in group IV, III and II and score 1 in group IV, I,
III and group II. The difference was significant (P<
0.05).
DISCUSSION

Endodontic instruments are often reused repeatedly during root canal preparation. This possesses great risk of contamination & transmission of infection if cleaning and sterilization protocol is not strictly followed. Cleansing, disinfection and sterilization are well known requirements in dentistry to avoid chain of contamination. Sterilization of instruments is done by three major methods: Steam under pressure (autoclave), dry heat and chemiclave. Lasers have also started being used as a method for sterilization. The bacillus stearothermophilus contaminated endodontic k-files in this study are heat-resistant bacteria spores. Various modes have been adopted for sterilizing endodontic instruments but out of them Steam autoclaving and glass-bead sterilizers are commonly recommended. The present study was conducted to assess effectiveness of pre-sterilization cleaning of endodontic instruments before placement in glass bead sterilizer.

In present study, 40 K files contaminated by preparing canals of extracted human mandibular teeth & were divided in 4 groups of 10 instruments as group I was negative control (non-contaminated), group II was positive control (contaminated without any cleaning protocol), group III was manual brushing + 3% H2O2 for 10 minutes and group IV was manual brushing + ultrasonic bath for 5 minutes.

Glass bead sterilizer, which works under the principle of dry heat, is the rapid chair side sterilization technique and is the most commonly used method of sterilization of endodontic files. The beads used should be smaller than 1 mm in diameter because large beads are not effective in transferring heat to the instruments. Moreover, the presence of large air spaces between the beads prevents heat transfer.

The most commonly used agent for cold sterilization is glutaraldehyde. It has a broad spectrum of biocidal activity with pungent odor. It penetrates into blood and
exudates due to its low surface tension and permits rinsing. However, contact with glutaraldehyde liquid as well as vapor severely irritates the eyes and burns the skin. Hence, the need for safer chair side cold sterilization method is looked on as an alternative. Ramakrishna et al conducted a study in which 50 K files (15 No.) were contaminated by preparing canals of extracted human mandibular teeth. Instruments were divided in five groups of 10 instruments each and different cleaning protocols were applied to each group. The selected endodontic instruments were then immersed in Van-Gieson’s stain and debris was evaluated under stereomicroscope for scoring. 81% of the selected samples showed residual debris. Combination of mechanical and chemical (2% glutaraldehyde) cleaning procedure followed by ultrasonic bath was found to be an effective method of removing debris from endodontic instruments. There was a statistically significant difference in the mean values with respect to the various cleaning protocol applied. We found that score 4 was seen maximally in group II and group I, score 3 in group III and group II, score 2 in group IV, III and II and score 1 in group IV, I, III and group II. Popovic et al investigated the effects of a sponge soaked in alcohol and an ultrasonic bath. They found that none of these methods were able to clean the instruments totally and effectively. These manual techniques required considerable amount of time and had risk of reintroducing contamination as were carried out by the human factor.

CONCLUSION
Authors found that manual brushing and ultrasonic bath is effective way of cleaning instruments as compared to manual brushing and hydrogen peroxide method.

REFERENCES
9. Ramakrishna SP, Ramchandra MW, Sachin MC, AnupKiran M, Singh H. To ascertain effectiveness of pre-sterilization cleaning of endodontic