Bisphosphonate-Related Osteoradionecrosis: A Case Report

Dr. Parnika Kuthiala¹, Dr. Sunaina Singla², Dr. Ramandeep Grewal³, Dr. Priya Pathak⁴, Priyanshi Sood⁵

¹Assistant professor, Department of Oral and Maxillofacial Surgery, Kartar singh Saraba Dental College and Hospital, Ludhiana
²Consultant, Oral and Maxillofacial surgeon, New Delhi
³Assistant professor, Department of Oral and Maxillofacial surgery, JCD Vidyapeeth Dental College and Hospital, Haryana
⁴Consultant, Crescent Smiles Dental Clinic, Udaipur
⁵B.Pharm, MBA (Pharma Tech), Narsee Monjee Institute of Management Studies, Mumbai

ARTICLE INFO

Abstract

Bisphosphonates are used to treat bony conditions like osteopetrosis and malignant bone metastasis. Despite their therapeutic benefits, osteonecrosis of the jaws has recently emerged as a significant complication in patients receiving these drugs. Bisphosphonate-related osteoradionecrosis of the jaws (BRONJ) is a condition found in patients who have received intravenous and oral forms of bisphosphonate therapy for various bone-related conditions which in turn manifests as exposed, nonvital bone involving the maxillofacial structures. This case presentation focuses on an 83-year-old man with a 4-year history of bisphosphonates for treatment of multiple myeloma, resulting in bisphosphonate-related osteoradionecrosis of the jaws (BRONJ).

Keywords:
Composite, Microleakage

INTRODUCTION

Bisphosphonates (BPs) are a class of agents used to treat osteoporosis and malignant bone metastasis. They are synthetic analogs of pyrophosphates, a natural regulator of bone metabolism found in bone matrix. They inhibit the differentiation of osteoclastic precursors, induce apoptosis of osteoclasts and stimulate the release of osteoclastic inhibitory factors of osteoblasts. Despite these benefits, BP-related osteoradionecrosis of the jaws is a significant complication in group of patients receiving these drugs.

CASE REPORT

83 year old male patient reported to the department of Oral and Maxillofacial Surgery with chief complaint of exposed bone and pain in the lower back left jaw region for the past 2 months. History dates back to 2 months when patient first noticed the same. Pain was gradual in onset, intermittent in nature, moderate in intensity, localized, non radiating & non-referred in the lower left back jaw region for the past 2 months. Patient also gave history of multiple myeloma 4 years back for which he took bisphosphonates for consecutive 2 years. Patient had not undergone any radiotherapy. Patient was complete mandibular denture wearer for the past 7-8 years with uneventful extractions around 10 years back.
Patient first reported to the department 2 years back with dull pain in the same region. The patient was then examined & attributed to history was advised to stop wearing the lower complete denture. Bisphosphonates were also stopped after the consultation with medical oncologist. Patient got relieved temporarily.

On extraoral examination, facial symmetry was intact with no extroral sinus or fistula with a mouthopening of 3.5 cm (approx). On intraoral examination, presence of edentulous mandible and partially edentulous maxilla. Exposed bone was seen in the left body of the mandible of around 3 cm X 1 cm in size extending from the retromolar triangle to premolar region (Fig. I). The exposed bone was yellowish white and the surrounding mucosa was inflamed and foul smell was present. There was no discharge and no sinus. So correlating the history and clinical examination, provisional diagnosis of BRONJ was made with differential diagnosis of chronic osteomyelitis and tumor of the jaws.

Advanced radiological examination in form of the CT scan was done which showed the osteolytic lesion in the left body of the mandible region (Fig. II & Fig. III). After routine blood investigations along with LFT and RFT which were within normal physiological limits, sequestrectomy was done followed by the placement of PRF in the surgical site was done under local anaesthesia (Fig IV). Post operative antibiotic coverage was given. The removed bone was then sent for the histological examination which revealed bony tissue with empty lacunae and reversal line in a fibrocellular connective tissue stroma. The connective tissue stroma depicted numerous inflammatory cells and extravasated RBCs; suggestive of “Sequestrum” (Fig. V). After 6 months of the follow-up, there was no recurrence of the lesion on OPG and Patient was asymptomatic.

Fig I: Exposed bone in the left body of the mandible around 3 cm X 1 cm in size extending from the retromolar triangle to premolar region
Fig II: Axial Section of CT scan showing diffuse osteolytic lesion in the left body of Mandible.

Fig III: 3D reconstruction of CT scan showing diffuse osteolytic lesion in the left body of mandible
Fig IV: A) Intraoral Surgical Site, B) Surgical Site After removal of Sequestrum, C) Preparation of PRF, D) Placement of PRF in the Surgical Site, E) Closure of the Surgical Site, F) Removed Sequestrum which is sent for HPE

Fig V: H&E stained section suggestive of SEQUESTRUM.

DISCUSSION

Patient may be considered to have BRONJ if all the following three characteristics are present:
1. Current or previous treatment with bisphosphonates.
2. Exposed bone in the maxillofacial region that has persist for more than 8 weeks.
3. No history of radiotherapy given to jaw.

In general, intravenous BPs shows higher incidence of BRONJ (0.8%-12%) as compared to oral forms (0.01-0.04%).

A REVIEW OF BISPHOSPHONATES

Bisphosphonates are synthetic analogues of inorganic pyrophosphates that have high affinity for calcium. Bisphosphonates are potent inhibitors of osteoclastic activity. Additionally, bisphosphonates have
antiangiogenic properties and may be directly tumoricidal, making them an important agent in cancer therapy. Bisphosphonates are used to treat osteoporosis, Paget’s disease of bone and hypercalcemia of malignancy.\(^3,4\)

In patients with osteoporosis, it is expected that bisphosphonates will arrest bone loss and increase bone density, decreasing the risk of pathological fracture resulting from progressive bone loss.

In patients with osteoradionecrosis, they inhibit the differentiation of osteoclastic precursors, induce apoptosis of osteoclasts and stimulate the release of osteoclastic inhibitory factors of osteoblasts.

Pathobiological Model for the Development of BRONJ

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>Dull, aching bone pain in the body of the mandible, odontalgia with no odontogenic cause, sinus pain, periodontally involved teeth not explained by dental origin.</td>
<td>Symptomatic treatment, conservative management of local factors, including chronic pain management & possible antibiotic therapy</td>
</tr>
<tr>
<td>Stage I</td>
<td>Exposed/necrotic bone, asymptomatic, no evidence of infection</td>
<td>Antimicrobial rinses and no surgical intervention</td>
</tr>
<tr>
<td>Stage II</td>
<td>Exposed/necrotic bone, pain, erythema, purulent drainage may or may not be present</td>
<td>Antimicrobial rinses, systemic antibiotics or antifungals, analgesics.</td>
</tr>
<tr>
<td>Stage III</td>
<td>Exposed/necrotic bone, pain/ infection, pathologic fracture, extraoral fistula, osteolysis to inferior border,</td>
<td>Antimicrobial rinses, systemic antibiotics or antifungals, analgesics, surgical debridement or</td>
</tr>
</tbody>
</table>
CONCLUSION
Given the many unknowns associated with BRONJ, it would seem prudent to develop a coordinated pretreatment and intratreatment protocol aimed at prevention and patient education. Preventive strategies such as establishment of meticulous oral hygiene regimes in conjunction with timely surgical procedures should be undertaken prior to commencing therapy. During therapy, strict review and maintenance of oral hygiene programs are essential in order to prevent the development of pathology.

REFERENCES