Management of immature open apex using Mineral Trioxide Aggregate Plug Technique-Case Report

Vijay Ugale¹, Mohini Lokhande², Swapnil Kolhe³, Meenal Gulve⁴
¹Lecturer, Department of Conservative Dentistry and Endodontics, MGV’s KBH Dental College and Hospital, Nashik
²Part III MDS, Department of Conservative Dentistry and Endodontics, MGV’s KBH Dental College and Hospital, Nashik
³Professor, Department of Conservative Dentistry and Endodontics, MGV’s KBH Dental College and Hospital, Nashik
⁴Principal and Head of The Department, Department of Conservative Dentistry and Endodontics, MGV’s KBH Dental College and Hospital, Nashik

INTRODUCTION

Health The primary objective in endodontic therapy is complete obturation of root canal space to prevent reinfection.¹ Management of immature root with a necrotic pulp and apical periodontitis is a challenging task. Incomplete root development caused by trauma, caries and other pulpal pathosis, result in absence of natural constriction at the end of the root, causes difficulty in obturation of the root canal.² The aim is to seal a sizeable communication between the root canal system and the periradicular tissue and provide a barrier against which obturation material can be compacted.² Apexification can be defined as a ‘method to induce a calcified barrier in a root with an open apex or the continued apical development of teeth with incomplete roots and a necrotic pulp’ (American Association of Endodontists 2003). Calcium hydroxide and MTA is most commonly used for this purpose. Calcium hydroxide is used for the induction of hard tissue barrier. But, this material requires 5–20 months to form the hard tissue barrier and also weakens the resistance of the dentin to fracture.³ This unpredictable and often lengthy course of this treatment create the challenges, including the vulnerability of the temporary

Keywords:
Apexification, Calcium Hydroxide, immature open apex, mineral trioxide aggregate.
coronal restoration to re-infection. Moreover, the treatment requires a high level of patient compliance.

A one step apexification procedure eliminates these problems. It implies the non-surgical compaction of a biocompatible material into the apical end of the root canal, thus, creating an apical stop and enabling immediate filling of the root canal. MTA has been described as a good material for this procedure owing to its good canal sealing property, biocompatibility and ability to promote dental pulp and periradicular tissue regeneration and produces apical hard tissue formation with significantly greater consistency than calcium hydroxide. It has been reported that MTA root fillings placed at the cemental canal limit showed better results than overfillings and helps in the formation of bone and periodontium around its interface. It also offers a barrier at the end of the root canal (apical plug) in teeth with necrotic pulps and open apices that permits vertical condensation of warm gutta-percha in the remaining canal.

This article presents a case treated with MTA apexification in immature open maxillary anterior teeth.

Case 1

A 21 year old female patient reported with a chief complaint of pain in maxillary right central and lateral incisor. History revealed that the patient had suffered trauma 10 years back and undergone treatment in a private clinic. The medical history was not significant. Clinical examination revealed slightly grayish discolored tooth 11 and 12 and previously attempted root canal treatment in the same tooth. The tooth was tender to percussion. Intraoral periapical radiograph showed well-defined periapical radiolucency and previous endodontic treatment with over extended gutta-percha in relation to 11 (Fig.1). After examination ReRCT of 11 and 12 was decided. After written consent, complete removal of GP radiograph showed wide open apex in relation to 11. After discussing different treatment options with the patient, we opted to go for MTA apexification. Working length was established by radiograph (Fig.2). Root canal was chemomechanically debrided with circumferential filing using the International Organization for Standardization (ISO) 80 K-file (DentsplyMaillefer, Switzerland) in conjunction with copious amount of 3% sodium hypochlorite (Shivam Industries, India) and 17% ethylenediaminetetraacetic acid (EDTA) solution. The canals were dried with sterile paper points and filled with calcium hydroxide (Metapex, Meta Biomed Co. Ltd., Korea) and the access cavity was sealed with Cavit (3M ESPE AG, Seefeld, Germany). One week later, tooth was again accessed under rubber dam isolation, and copious amount of normal saline was used to remove any remnants of the calcium hydroxide medicament. Canal was thoroughly dried with absorbent paper
points. White MTA Angelus (Angelus, Londrina, PR, Brazil) was mixed according to manufacturer’s instructions and carried to the canal with an amalgam carrier. Apical plug of 5mm of thick paste of MTA was condensed using hand pluggers and confirmed radiographically (Fig.3). After placing a moist cotton pellet, the access cavity was restored with Cavit. After 72 hours, the hard set of MTA was confirmed and the remainder of the root canal was obturated with thermoplasticized gutta-percha (Obtura II, Obtura Spartan, and Fenton, Missouri, USA) and zinc oxide eugenol sealer followed with post endo restoration with composite (Fitek Z350 XT 3M ESPE) (Fig. 4).

Case 2
A 20-year-old male patient presented with the chief complaint of discomfort while chewing in front region of upper jaw. Patient gave a history of traumatic incident 5 years back for which she had visited a private clinic. Medical history was insignificant. Clinical examination revealed slightly discolored tooth 12 and previously attempted treatment in the same tooth. The tooth was tender to percussion. Tooth also did not respond to cold and electric pulp vitality tests. Intraoral radiograph showed a well-defined periapical radiolucency surrounding the wide open apex of tooth 12 (Fig.5). Diagnosis was pulpal necrosis with chronic apical periodontitis. After detailed discussion with the patient, we decided to perform MTA apexification procedure. Written consent was obtained from the patient. After rubber dam isolation, access cavity was prepared and working length determined using the radiograph (Fig.6). Root canal was chemo-mechanically debrided with circumferential filing using the International Organization for Standardization (ISO) 80 K-file (DentsplyMaillefer, Switzerland) in conjunction with copious amount of 3% sodium hypochlorite (Shivam Industries, India) and 17% ethylenediaminetetraacetic acid (EDTA) solution. The canals were dried with sterile paper points and filled with calcium hydroxide (Metapex, Meta Biomed Co. Ltd., Korea) and the access cavity was sealed with Cavit (3M ESPE).
AG, Seefeld, Germany). One week later, tooth was again accessed and copious amount of normal saline was used to remove any remnants of the calcium hydroxide medicament. Canal was thoroughly dried with absorbent paper points. White MTA Angelus (Angelus, Londrina, PR, Brazil) was mixed according to manufacturer’s instructions and carried to the canal with an amalgam carrier. Apical plug of 5mm of thick paste of MTA was condensed using hand pluggers and confirmed radiographically (Fig.7). After placing a moist cotton pellet, the access cavity was restored with Cavit. After 72 hours, the hard set of MTA was confirmed and the remainder of the root canal was obturated with thermoplasticized gutta-percha (Obtura II, Obtura Spartan, and Fenton, Missouri, USA) and zinc oxide eugenol sealer followed with post endodontic restoration with composite (Filtek Z350 XT 3M ESPE) (Fig. 8).

Discussion
Apexification is necessary to obtain an apical barrier which prevent the passage of toxins and bacteria into periapical tissues, also this barrier is mandatory to allow the compaction of the root filling material.\(^8\) Apexification is supposed to create an environment to permit deposition of periodontal tissues to continue root development.\(^9\) Calcium hydroxide has been considered as an efficient material for this purpose. This chemical has several disadvantages such as difficulty of the patient’s recall management and delay in the treatment, unpredictability of apical closure, failure in controlling infection, recurrence of infection.\(^{10,11}\) Furthermore, there is cervical fracture, and increased risk of root fracture after dressing.\(^{12}\) MTA has
been developed by Torabinejad and coworkers in 1990 at Loma Linda University. It is available as grey and white MTA. The material consists of tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferite, and calcium sulphate dihydrate and silicate oxide. Presence of bismuth oxide makes it radiopaque. pH of the material is 12.5 at three hours. The US Food and Drug Administration approved mineral trioxide aggregate (MTA) in 1998 as a therapeutic endodontic material for humans. The advantages of this material are (i) reduction in treatment time, (ii) immediate restoration of the tooth, (iii) no adverse effect on the mechanical properties of root dentin. In a prospective study, apexification treatment with MTA showed a high prevalence of healing and apical closure. In MTA plug technique, root canals must be disinfected with calcium hydroxide because performing chemomechanical preparation alone is not effective for complete elimination of microorganisms and recent data suggest that the combination of MTA and calcium hydroxide in apexification procedures may favourably influence the regeneration of the periodontium. Cwikla et al. in their in vitro study determined the antibacterial efficacy of three Ca(OH)₂ formulations and found Ca(OH)₂ mixed with iodoform and silicon oil (Metapex) was the most effective dentinal tubule disinfectant. Therefore, in our case reports after minimal root canal preparation Ca(OH)₂ with iodoform and silicon oil (Metapex) short term dressing was given to disinfect the root canal followed by application of MTA.

Matt GD et al. investigated the microhardness of 2mm and 5mm thicknesses of white MTA used as an apical barrier and 5mm thickness was found to be significantly stronger with less leakage than a 2mm thickness regardless the placement technique used. The previous study investigated displacement of MTA as an apical barrier material in teeth with open apices, showing that 5mm thickness of apical barrier offers significantly more resistance to displacement than 1mm thickness. This suggests that the thickness of MTA directly affects its hardness, sealing ability and displacement when used as an apical barrier. Therefore, in accordance with the previous studies, in our case reports 5mm of MTA apical plug was placed.

Aminoshariae and coworkers with radiographic and microscopic evaluation showed that hand method of placement and condensation of MTA resulted in better adaptation with fewer voids than the ultrasonic method. Accordingly in the present case reports MTA placement and condensation followed manually with pluggers. In a comparative study on effectiveness of MTA and Ca(OH)₂ in apexification, MTA demonstrated good success and an effective option for apexification. However, MTA is much expensive and more difficult to work with during placement in a root canal due to
its naturally sandy consistency when hydrate.20

Conclusion

Apexification in one visit by placing an apical plug of MTA is a predictable and reproducible clinical procedure. The primary advantages of this material as an apical barrier include development of proper apical seal and excellent biocompatibility. This innovative procedure is predictable and less time consuming one.

References